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Static cooperator-defector patterns in models of the snowdrift game played on cycle graphs
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Evolutionary graph theory is an extension of evolutionary game theory in which each individual agent,
represented by a node, interacts only with a subset of the entire population to which it belongs (i.e., those to
which it is connected by edges). In the context of the evolution of cooperation, in which individuals playing
the cooperator strategy interact with individuals playing the defector strategy and game payoffs are equated
with fitness, evolutionary games on graphs lead to global standoffs (i.e., static patterns) when all cooperators
in a population have the same payoff as any defectors with which they share an edge. I consider the simplest
type of regular-connected graph, the cycle graph, in which every node has exactly two edges (k = 2), for the
prisoner’s dilemma game and the snowdrift game, the two most important pairwise games in cooperation theory.
I show that for simplified payoff structures associated with these games, standoffs are only possible for two
valid cost-benefit ratios in the snowdrift game. I further show that only the greater of these two cost-benefit
ratios is likely to be attracting in most situations (i.e., likely to spontaneously result in a global standoff when
starting from nonstandoff conditions). Numerical simulations confirm this prediction. This work contributes to
our understanding of the evolution of pattern formation in games played in finite, sparsely connected populations.
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I. INTRODUCTION

The prisoner’s dilemma game (PD) and the snowdrift game
(SD) are the two main two-player games used to study the
theoretical underpinnings of the evolution of cooperation (see,
e.g., [1,2]). PD is often simplified by assuming one type of
agent, cooperators, pays a cost c to provide a benefit b to
their coplayer (b > c > 0) [3]. The other type of agent,
defectors, pays no cost and provides no benefit. Thus mutual
cooperation results in a net benefit of R = b − c to each
player, mutual defection results in a net benefit of P =
0 to each player, and when cooperation is played against
defection, the defector receives a net benefit of T = b while
the cooperator receives a net benefit of S = −c (i.e., a net cost
of c) [3,4]. If these game payoffs are equated with evolutionary
fitness, it is clear that defectors dominate cooperators in large,
well-mixed populations because defection is the higher-paying
strategy against both cooperators (T > R) and defectors
(P > S) [5]. Thus evolutionary dynamics predicts that in the
absence of mitigating circumstances (i.e., in large, well-mixed
populations, with no reciprocity, kin selection, group selection,
or green-beard effects; see [6,7]), defectors should wipe out
cooperators, even though populations of cooperators have a
greater mean fitness than populations of defectors (R > P ) [8].

In the simplified SD, cooperation by either player results
in both players receiving a benefit b. The total cost associated
with providing this benefit is c, which is shared equally in
the case of mutual cooperation, but paid outright in the case
of unilateral cooperation (again, b > c > 0). Thus mutual
cooperation results in a net benefit of R = b − c/2, mutual
defection results in a net benefit of P = 0, cooperation
against a defector yields a net benefit of S = b − c, and
defection against a cooperator yields a net benefit of T = b

[4]. Thus, in contrast to PD, in SD S > P , meaning that
cooperators can invade defectors and vice versa; in the absence
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of mitigating circumstances, cooperators and defectors are
predicted to stably coexist with an equilibrium frequency
of cooperators of (P − S)/(R − S − T + P ) [1,7,9]. Even
though cooperators persist in the snowdrift game, the mean
fitness of a mixed-equilibrium population of cooperators and
defectors is still less than that of a population composed solely
of cooperators (i.e., as with PD, there is still a social dilemma
at play in SD [1,9]).

Evolutionary graph theory captures a particular type of
population structure where individuals (represented by graph
nodes) interact with others in their spatial or social neighbor-
hood (connected by graph edges) [10,11]. In this framework,
a focal individual at a particular node probabilistically adopts
its neighbor’s strategy according to a function of the mean
payoffs of both the focal and neighbor individuals when
interacting with the members of their respective neighbor-
hoods [11]. (Such strategy updating can be interpreted as
either competitive replacement or learning.) Thus, trans-
lating the results above into the parlance of evolutionary
graph theory, on complete graphs, where every node is
connected to every other node [12], PD predicts the extinc-
tion of cooperators, whereas SD predicts cooperator-defector
coexistence.

When graphs are incomplete, such that interactions occur
among limited subsets of individuals, the results can be quite
different [10,12–14]. Depending on the nature of the interac-
tion graph, these differences can be qualitative (e.g., the co-
existence of cooperators and defectors in PD or the extinction
of cooperators in SD) or quantitative (e.g., differences in the
equilibrium proportion of cooperators in SD). Here my focus
is on global standoffs, i.e., static patterns that occur when all
edges in a graph connect either (i) cooperator-cooperator pairs,
(ii) defector-defector pairs, or (iii) cooperator-defector pairs,
where the cooperator and defector have the same mean payoffs
within their respective neighborhoods. In an earlier paper,
my co-authors and I considered regular graphs with nodes
of degree k = 3, 4, and 6 [15]. Moreover, these graphs
represented the case where populations are arrayed on a
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two-dimensional substrate in which every individual has three,
four, or six nearest neighbors (lattices), respectively. Here I
consider the simpler (but, contrastingly, analytically tractable)
case of graphs of degree k = 2 (cycle graphs). This is equivalent
to interactions along one dimension where every individual
in the population has a left neighbor and a right neighbor.
Ohtsuki and Nowak [3] derived the cost-benefit ratios that lead
to one strategy being favored over the other. I take a different
tack, investigating the static graphwide patterns that occur at
particular cost-benefit ratios. Thus this research contributes to
a number of recent studies that have considered what happens
at the transition points between different phases in evolutionary
dynamical systems (e.g., [15–20]).

II. CRITERIA FOR STANDOFFS

In order for a global standoff to occur, connected coopera-
tors and defectors must have the same mean payoff within their
respective neighborhoods [15]. For every cooperator-defector
pair, this means that if the cooperator is connected to i

cooperators (i ∈ {0, 1}) and the defector is connected to j

cooperators (j ∈ {1, 2}), then Ri + S(2 − i) = Tj + P (2 −
j ). (Note that i < 2 because a cooperator connected to a
defector is connected to at most one cooperator when k = 2;
similarly, j > 0 because a defector connected to a cooperator
is connected to at least one cooperator.) To simplify matters,
in PD, we can define the cost-benefit ratio u = c/b and then,
noting that relative rather than absolute fitness determines the
outcome of evolutionary dynamics, redefine R, S, T , and P in
terms of that single parameter: R = 1, S = 0, T = 1 + u, and
P = u [4]. Substituting and solving for u, we see that in PD,
the potential for standoffs only occurs when u = (i − j )/2.
Similarly, in SD, we can define the cost-benefit ratio of mutual
cooperation v = c/(2b − c), redefine R = 1, S = 1 − v,
T = 1 + v, and P = 0 [4], and determine that the potential
for standoffs only occurs when v = (j − 2)/(i − j − 2).

According to the criteria above, there are four combinations
of i and j that need to be examined for both PD and SD for
cycle graphs. In PD, there are no valid values of u that have
the potential to lead to standoffs [Table I(a)]; PD will not be
considered further here. In SD, there are two valid values of v

that have the potential to lead to standoffs: v = 1/3 and 1/2
[Table I(b)].

FIG. 1. Example standoffs in the snowdrift game when (a) v =
1/3 and (b) v = 1/2. Here nodes are shown as squares (black denotes a
cooperator and white a defector) and edges are the borders they share.
(a) For every cooperator-defector edge, the cooperator is adjacent to
exactly zero other cooperators and the defector is adjacent to exactly
one cooperator [see Table I(b)]. If there were longer sequences of
cooperators, the terminal cooperators in the sequence would border
both a cooperator and a defector. Further, if there was only one
defector between two cooperators, it would by definition have two
cooperators in its neighborhood. (b) For every cooperator-defector
edge, both the cooperator and the defector are adjacent to exactly one
cooperator [see Table I(b)].

III. STANDOFFS WHEN v = 1/3

In SD, when v = 1/3, nontrivial standoffs are only possible
when all cooperators have no (other) cooperators among their
neighbors and have at least two defectors between them [e.g.,
Fig. 1(a)]. However, if a cycle graph is initialized with any
two cooperators neighboring one another (i.e., a cooperator
cluster), the type of standoff given in Fig. 1(a) will probably
not occur. This is because at v = 1/3, clusters of cooperators
tend to expand at the expense of clusters of defectors and
cooperator singletons (i.e., single cooperators surrounded by
defectors). A hypothetical example of both situations is given
in Fig. 2. In the case of a cluster of cooperators meeting a
cluster of defectors, the terminal member of the cooperator
cluster has a mean payoff of (R + S)/2 = 1 − v/2 = 5/6,
whereas the terminal member of the defector cluster has a
(lower) mean payoff of (T + P )/2 = (1 + v)/2 = 2/3, leading
to growth of the cooperator cluster [Fig. 2(a)]. In the case
of cooperator singletons, growing cooperator clusters tend to
destroy them too. When a cluster of cooperators grows through
a cluster of defectors towards the cooperator singleton, there
comes a time when they have a single defector between them.
This defector has a mean payoff of 2T /2 = 1 + v = 4/3,
which is greater than that of either the terminal member of the
cooperator cluster (5/6, as above) or the cooperator singleton
(2S/2 = 1 − v = 2/3). Two alternatives are possible: either
(i) the terminal cooperator in the cluster is taken over by a

TABLE I. Values of u and v that could potentially lead to standoffs between cooperators C and defectors D in cycle graphs in the (a)
prisoner’s dilemma and (b) snowdrift games, respectively. Because b > c > 0, both 0 < u < 1 and 0 < v < 1. Therefore, there are no values
of u that lead to standoffs for the prisoner’s dilemma, but two values of v that potentially lead to standoffs in the snowdrift game (v = 1/3 and
1/2).

(a) Prisoner’s dilemma
D with j = 1 C in neighborhood D with j = 2 C in neighborhood

C with i = 0 C in neighborhood u = − 1/2 u = − 1
C with i = 1 C in neighborhood u = 0 u = − 1/2

(b) Snowdrift game
D with j = 1 C in neighborhood D with j = 2 C in neighborhood

C with i = 0 C in neighborhood v = 1/3 v = 0
C with i = 1 C in neighborhood v = 1/2 v = 0
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FIG. 2. Hypothetical example evolution of a graph’s configu-
ration shown through successive time steps (rows), with clones
of higher-payoff nodes (squares) probabilistically and sequentially
replacing the inhabitants of lower-payoff nodes (adjacent squares to
the left and right), but not vice versa. Time steps in which nothing
happens are omitted. (a) A cluster of cooperators (black) can grow
at the expense of clusters of defectors (white) in SD when v = 1/3
because the terminal cooperators in the cluster have a mean payoff of
5/6 and the terminal defectors have a mean payoff of 2/3. (b) When a
growing cooperator cluster comes close to a cooperator singleton, the
defector singleton in the middle has the highest payoff (4/3 versus
5/6 for the terminal cooperator and 2/3 for the singleton cooperator).
However, if the defector forms a cluster by taking over the terminal
cooperator, the cooperator cluster is again at an advantage; the
defectors make no further incursion. If instead the defector destroys
the cooperator singleton, this opens the door for further growth of the
cooperator cluster. (c) When cooperator clusters grow close to one
another, they are prevented from joining by the high payoff of a single
defector between them. However, this defector can never result in a
defector cluster larger than two individuals. The resulting defector
gap meanders between the neighboring cooperator clusters until it
meets another gap; at that time, the gaps can go their separate ways
or join, but they never spawn a new gap (Fig. 3). Thus, if the graph is
initialized randomly, cooperators will eventually take over almost the
entire graph (i.e., except for a single gap of defectors in finite graphs).
This prediction was confirmed by simulation (Fig. 4).

defector, reconstituting a cooperator cluster versus defector
cluster scenario in which the terminal defector is vulnerable to
reinvasion by a clone of the (new) terminal cooperator, or (ii)
the singleton cooperator is taken over by a defector, opening
up new defector territory for further cooperator cluster growth
[Fig. 2(b)].

FIG. 3. Hypothetical example evolution of a graph’s configu-
ration shown through successive time steps (rows), with clones
of higher-payoff nodes (squares) probabilistically and sequentially
replacing the inhabitants of lower-payoff nodes (adjacent squares to
the left and right), but not vice versa. Time steps in which nothing
happens are omitted. (a) When two defector gaps are within one
singleton cooperator of each other, the singleton cooperator and its
adjacent defectors may be in temporary standoff when v = 1/3.
(b) However, just as in Fig. 2, this standoff is vulnerable to expanding
cooperator clusters from either side. Once the singleton cooperator
is converted to defection, the two gaps join into one. Therefore, we
expect to see the evolution towards fewer and fewer defector gaps
over time.

When two growing cooperator clusters come together at
v = 1/3, they eventually have a single defector between them;
this lone defector has a higher mean payoff (4/3, as above)
than either terminal member of the two cooperator clusters
(5/6, as above). Thus the lone defector can grow to a cluster
of two; however, it can grow no further (and, indeed, is liable
to shrink back to a lone defector) because it is now a defector
cluster versus two cooperator clusters. Thus there remains a
one- or two-defector gap between clusters that are growing
towards one another [Fig. 2(c)]. The positions of these gaps
migrate as random walks between the cooperator clusters that
define them.

Thus, in SD when v = 1/3 on cycle graphs with initial
cooperator clusters, we inevitably reach a point where all
the clusters have grown close to one another with short,
meandering defector gaps between them. When these defector
gaps meet, they tend to coalesce (Fig. 3). Given enough
time, therefore, finite cycle graphs initialized with at least one
cooperator cluster should be left with a single large cooperator
cluster and a single small defector gap, but not a standoff.

Stochastic simulations confirm this prediction. I investi-
gated the evolution over 105 time steps of 50-node cycle
graphs that were initially populated with a random assortment
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FIG. 4. Four example simulation outcomes for the evolution of 50-node cycle graphs (positions 1 and 50 are neighbors, as are any positions
within 1 of one another) that initially had a random assortment of cooperators (black) and defectors (white), with v = 1/3 (snowdrift game).
The configurations of the graphs are shown across 105 time steps (rows). (a) When there are no cooperator clusters initially, the graph
becomes a standoff. (b)–(d) In contrast, when there are any cooperator clusters initially, they tend to grow and take over almost the entire
graph.

of cooperators and defectors [for each replicate, the initial
proportion of cooperators was drawn from the uniform random
distribution U (0, 1)]. In each time step, a focal individual
and one of its neighbors were chosen randomly. Their mean
payoffs from playing SD within their neighborhoods, pf and
pn, respectively, were then compared. [The cost-benefit ratio
of mutual cooperation was set to v = 1/3; see Table I(b).]
If and only if pn > pf , a clone of the neighbor took over
the position occupied by the focal individual with probability
(pn − pf )/(1 + v); the denominator, being the difference
between the maximum and minimum mean payoffs, ensures
that this probability is between 0 and 1 [9], although note that
there is actually no way for a maximum-payoff individual (a
defector between two cooperators) to be beside a minimum-
payoff individual (a defector between two defectors). This
update procedure is usually called the replicator rule, due to
its convergence with replicator dynamics in large, well-mixed
populations [11,21]. Other update procedures are possible

[11,22]; however, in order for true standoffs to occur, it
is necessary to adopt a rational update procedure such that
replacement never occurs when pn � pf .

Over 100 replicates, two patterns were noted. When the
initial graph had no cooperator clusters, which happened only
rarely, and only then when cooperators were initially rare, it
became a standoff [Fig. 4(a)]. However, when the initial graph
did have cooperator clusters (as was typical), cooperators took
over almost the entire graph, except for surviving defector
gaps, which tended to join together and become less numerous
over time [Figs. 4(b)–4(d)]. Thus, even though v = 1/3 can
admit standoffs in SD, they do not necessarily evolve from
nonstandoff conditions; i.e., cooperator-defector standoffs
may be stable, but not attracting, depending on the starting
configuration.

Interestingly, though, there are some very specific initial
graph configurations that are not standoffs themselves, but that
can lead to standoffs. Specifically, when pairs of cooperator
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FIG. 5. Four example simulation outcomes for the evolution of 50-node k = 2 graphs (positions 1 and 50 are neighbors, as are any positions
within 1 of one another) that initially had a random assortment of cooperators (black) and defectors (white), with v = 1/2 (snowdrift game).
(a)–(c) The configurations of the graphs are shown across 105 time steps (rows), except for (d), which is shown across 1300 (the entire graph
was taken over by defectors at time step 1190).

singletons have a defector singleton between them, the defector
singleton can overtake one of the cooperator singletons,
leading to a defector cluster and a remaining cooperator
singleton. This is what occurred in the model run in Fig. 4(a).
In addition to the seven cooperator singletons that persisted
until the graph reached a standoff, there were also initially
cooperator singletons at positions 10 and 23, two positions
away from other cooperator singletons at positions 8 and 25,
respectively. The cooperator singletons at positions 10 and 23
lasted for 44 and 23 time steps, respectively, not long enough
to be visible in Fig. 4(a). Thus, once the cooperator singleton
at position 10 was converted to a defector, this graph became
a standoff.

IV. STANDOFFS WHEN v = 1/2

The other possible value of v that leads to standoffs in SD
on cycle graphs is v = 1/2 [Table I(b)]. In this case, standoffs
are only possible when all cooperators are in clusters (no
cooperator singletons) and all such clusters are separated by

at least two consecutive defectors [no defector singletons; see,
e.g., Fig. 1(b)]. Unlike the v = 1/3 case, in the v = 1/2 case,
such standoffs tend to emerge spontaneously from random
initial configurations of the graph. When v = 1/2, in contrast
to when v = 1/3, cooperators never have a higher payoff than
a defector with whom they share an edge; the best they can do
is a tie when a cooperator cluster abuts a defector cluster. In
this case, the terminal cooperator has a payoff of (R + S)/2=
1 − v/2 = 3/4 and the defector has a payoff of (T + P )/2 =
(1 + v)/2 = 3/4. Thus defector singletons and clusters must
necessarily take over all cooperator singletons until the graph
is entirely composed of cooperator and defector clusters.
In addition, we should expect the proportion of cooperators
in the standoff to be very closely related to proportion of
cooperators in the initial configuration of the graph.

Stochastic simulations confirm both of these predictions.
When the models above were rerun for v = 1/2, standoffs were
reached rapidly in every replicate [Figs. 5(a)–5(c)], except
when the initial proportion of cooperators was sufficiently
low that every cooperator was a singleton [in this case, the
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FIG. 6. For 100 simulations runs on 50-node cycle graphs, with
v = 1/2 (snowdrift game), the standoff proportion of cooperators
was significantly positively correlated with the initial proportion of
cooperators (Spearman rank correlation: rS = 0.99, P < 0.0001, and
n = 100). The initial arrangement of cooperators and defectors was
random. The symbol area is proportional to the number of overlapping
points at particular coordinates. The 1:1 line is shown for visual
reference; because cooperators can never overtake defectors under
these conditions, all points must be on or below this line.

cooperators were rapidly wiped out by the defectors; see
Fig. 5(d)]. In Fig. 5(b), the initial purging of cooperator
singletons can barely be seen; in Fig. 5(d), the vertical axis
has been scaled so that this purging is obvious. Additionally,
the proportion of cooperators when the standoffs were reached

was strongly positively correlated with the initial proportion
of cooperators (Fig. 6).

V. CONCLUSIONS

Thus, to summarize, the determination of cooperator-
defector standoffs in PD and SD played on cycle graphs is
analytically tractable. For costs c and benefits b (b > c > 0),
there are no valid values of u = c/b (i.e., those that are between
0 and 1, exclusive) that can potentially produce a global
standoff in PD [Table I(a)]. By contrast, there are two valid
values of v = c/(2b − c) that can potentially produce a global
standoff in SD, v = 1/3 and 1/2 [Table I(b)]. When v = 1/3,
simple pattern analysis and numerical simulation demonstrate
that cooperator-defector standoffs will only emerge from
nonstandoff conditions if there are no initial cooperator
clusters [Figs. 1(a) and 4(a)]; if there is even one cooperator
cluster, it will take over almost the entire cycle graph, except
for a small defector gap that cannot be eliminated [Figs. 2,
3, and 4(b)–4(d)]. Therefore, when v = 1/3, global standoffs
are typically nonattracting. In contrast, when v = 1/2, the
presence of any cooperator clusters leads to an attracting
standoff because the terminal cooperator in a cluster will have
the same payoff as the terminal defector of the defector cluster
that abuts it [Figs. 1(b), 5, and 6]. Overall, this work contributes
to our understanding of the evolution of pattern formation in
games played in finite, sparsely connected populations.
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